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A GENERAL ALGORITHM FOR RELATING GROUND TRAJECTORY DISTANCE,

ELAPSED FLIGHT TIME, AND AIRCRAFT AIRSPEED AND

ITS APPLICATION TO 4-D GUIDANCE

Edwin C. Foudriat

Langley Research Center

SUMMARY

A general solution using an elliptic integral approximation which relates flight time,

aircraft airspeed, and ground distance on straight-line and circular-arc trajectory seg-

ments is developed in this paper. The solution procedure is applicable to both constant

and accelerating aircraft flight. A number of acceleration profiles can be considered;

the two prdfiles developed in the paper are for constant and exponential acceleration. In

addition, wind shear including both magnitude and heading change is incorporated in

the solution.

The solution concept is utilized and tested in a four-dimensional (4-D) control

algorithm where both flight time and final velocity are specified. The results show that

the algorithm converges both rapidly and accurately. In addition, the effects of wind

gusts and flight control system dynamics are investigated in order to demonstrate the

adaptability of the algorithm to 4 -D guidance.

INTRODUCTION

Increased capacity of air traffic can be obtained through more precise sequencing

of aircraft in both terminal and en route environments. To improve longitudinal spacing

and sequencing, the four-dimensional (4-D) control concept has been proposed. (See

ref. 1.) In this concept the aircraft must not only fly a prescribed ground route and alti-

tude profile but must also traverse segments of the route in prescribed time intervals in

order to sequence and space properly with other aircraft in the vicinity.

In investigating aircraft 4-D control systems, one of the primary requirements is

to determine either the time required to fly a fixed route with a prescribed velocity pro-

file or, alternatively, to determine the airspeed profile needed to fly the route in a speci-

fied elapsed time. Some of the research on 4-D control has incorporated specific closed

form solutions to this problem, generally based upon solutions of the elliptic integral

function over curved flight portions of the trajectory. (See refs. 2 to 5.) With the excep-



tion of Erzberger and Pecsvaradi (ref. 3), who used only first-order approximations,

the distance-time-velocity relationships utilized have been only for constant airspeed.

The research reported in this investigation extends the capability by developing

accurate closed form solutions which define the relationship between flight time and

ground distances covered for accelerating (decelerating) flight on both straight-line and

circular-arc segments of a ground trajectory and for the inclusion of wind shear during

constant-airspeed flight. The procedure indicates that a number of acceleration profiles

can be handled; the two profiles derived in this report are for constant and exponential

acceleration. The latter is representative bf a response of a first-order lag controller

to a step command. Wind shear includes linear changes in both windspeed and direction

and can be keyed to the aircraft ascent rate. It has been incorporated during the

straight-line portions of the flight at constant airspeed.

The research utilizes and tests these solutions in an algorithm for defining the

flight profile for an aircraft in a 4-D control situation. The aircraft is required to trav-

erse a trajectory in a specified time and arrive at the final point with a specified veloc-

ity. Although the algorithm must be solved by a computer, the process is much simpler

than one which would solve the aircraft equations of motion as a two-point boundary-

value problem. Hence, the procedures developed here will find considerable use in

implementing velocity-command systems for ground-based or onboard aircraft flight

control, especially when 4-D control is required. (See ref. 4.)

SYMBOLS

Values are given in both SI and U.S. Customary Units in the text and in SI units in

the figures. The measurements and calculations were made in U.S. Customary Units.

a acceleration (or deceleration) constant

b = vw sin z

c = vc 2 _ vw2 sin z

d ground distance

di ground distance on ith segment

dr ground distance remaining

ds(vl,v 2 ) ground distance traversed during acceleration from v 1 to v2
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f() functional notation

g constant, 2vc

K velocity control servo gain

k ratio of windspeed to airspeed

ko  k at beginning of wind shear

q instantaneous velocity during acceleration

R ground turn radius

s Laplace variable

T variable of integration, vc - vu

TD time required to traverse a K-segment trajectory

t time

ta time to accelerate

tf final velocity stabilization time

t i  time to fly ith straight-line segment

ti time to fly ith circular-arc segment

tj time of jth instant

ye commanded airspeed

vf final airspeed

*Vg ground velocity

vu airspeed
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VW windspeed

v 1  airspeed at start of acceleration

v 2  airspeed at end of acceleration

X function, c + gT + T 2

x,y general distance variables

z ground heading wind direction, 1g - V/w

Az incremental change in z

z i  value of z on ith straight-line segment

Zj value of z at tj

Zo value of z at beginning of wind shear

0 time constant

o = ko - Zo
X1

X2
X1

aw wind standard deviation

/ aircraft heading

I9g ground heading

IPg,i ground heading in ith segment

I/w wind direction

X1  wind shear heading gradient
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X2  wind-airspeed ratio gradient

Subscript:

max maximum

Superscript:

k denotes kth iteration solution

Abbreviations:

C.A. circular arc

S.L. straight line

Dots over symbols denote derivatives with respect to time and an arrow over a

symbol denotes a vector.

BASIC TIME-DISTANCE RELATIONSHIPS FOR AIRCRAFT FLIGHT

It is desired to determine the basic relationship for the ground distance traversed

by an aircraft flying at airspeed u and perturbed .by a steady wind vw at heading

- The ground trajectory in the horizontal plane consists of straight-line (S.L.) seg-
ments and connecting circular arcs (C.A.) of constant radius. 1

The time to fly the ith straight-line portion is

_ di
ti -

where di is the ith straight-line segment distance and vg is the ground velocity. The

ground velocity vg can be calculated from

7g = vg(cos iLg,sin z'g) = vu + 7w = vu(cos z,sin ) + vw(cos 4w,sin 4/w) (1)

where vu and V' are the airspeed magnitude and heading, respectively, vw and 4'w
are the windspeed magnitude and heading, respectively, and 4 'g is the ground heading

angle. Solving for vg gives

1The radius R is usually selected on the basis of maximum operating velocity
during the flight regime of interest and maximum bank angle, passenger comfort being
considered.
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Vg = u [ k2 +k2+2kcos (-w) 1/2  (2)

where k = vw/vu. Since the variable zg is independent of flight conditions, it is

desirable to rewrite equation (2) to eliminate V. By the law of cosines,

cos (zp- 4w) = v cos g - w)'- k (3)

Substituting equation (3) into equation (2) and performing additional algebraic manipula-

tion result in

Vg = vu 1k2 sin2 (4g - 1/ 2 + k cos (lPg - Pw) (4)

(Note that Erzberger and Lee (ref. 2) uses the 0(k) approximation.) The time to fly

the circular-arc' segment can be determined by considering the angular velocity as

V
4g R (5)

By use of equation (4), equation (5) can be written as

Vu dt = ~g,i+1 d4g (6)
SR g,i 1 - k2 sin2 (4g w)1/ 2 + k cos ( g- Pw)

The right-hand side of equation (6) can be evaluated as

f(k,zi+,zi i+1 - k2 sin2 z)1/2 - k cos z dz (7)
zi 1 - k2

where

Z = V'g - -1W

For k constant, the first term of equation (7) is the incomplete elliptic integral of the

second kind. By using the approximation

(1-x)1/2 1 x x2  (8)
2 8

the integral can be evaluated as
z i+1

f 1(k,zi+1,zi)= 1 1 (1 k2- k z - k sin z +  + sin 2z - sin 4
_ k ) 4 6 4 / 8 ( k 4  2 5 6 2  ( 9

zi (9)
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A previously reported study (ref. 4) has shown equation (9) to be accurate to within

0.02 percent for all reasonable wind conditions.

Equations (4) and (6) form the basis for developing solutions to determine time-

distance relationships for both constant-velocity and accelerating-velocity flight on

straight-line and circular-arc trajectories.

Constant-Airspeed Flight

The time-distance relationship for constant-airspeed flight for a straight-line tra-

jectory is given by

di - di f 2 (k,z) (10)

vu [(1 - k2 sin 2 )1/2 + k cos z] Yu

For the circular-arc segment, the left-hand side of equation (6) is integrated to give

ti = R fl(k,zi+l,zi) (11)

Constant-Acceleration Flight

It is assumed that the aircraft is accelerating (decelerating) at the constant rate a.

Usually, this acceleration will take place when the aircraft must reach some final velocity

constraint, for example, high-altitude cruise or final approach velocity. Generally, the

percentage velocity change made by the aircraft during any one maneuver, except take-

off and touchdown, will be small.

For a straight-line segment of flight,

vu = vl + at (12)

Substituting equation (12) into equation (4) results in

vg = = [(vl + at) 2 - v 2 sin2  1/2 + w cos

This function can be integrated in closed form to obtain

d = cos z)q 2 b2 - b2 log [q + (q2 - b21/2 (13)

V1
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where

q = v 1 + at

b = vw sin z

For the circular-arc segment of flight, equation (12) is substituted into the left-

hand side of equation (6) and integrated to obtain

a t 2 +1 t' =f1(k,z+Az,z) (14)
2R R

Note that equation (14) is an approximation since k in the evaluation of fl was

assumed to be constant but in the accelerating case is a function of time t'. The result-

ing error can be kept small if during the maneuver, the change in vu is small. Here,

this means choosing small increments Az and averaging the velocity vu over the

interval 7. The value k becomes

k Vw
V + a

2

where 7 can be calculated for Az by

lAzI R
Vg

and by using equation (4) to calculate vg. In the case of equation (14), the time-distance

(in terms of heading change) relationship is obtained by solving the quadratic function for

t subject to the approximations noted previously.

Exponential-Acceleration Flight

To obtain exponentially accelerated (decelerated) flight, it is assumed that the air-

plane velocity change (probably with an autothrottle) can be approximately represented by

a first-order-lag system; that is

Vu = -O(Vu - VC)

where

vc commanded velocity

0 system time constant

The velocity relationship is

vu = vc - (vc - vl)e-t (15)



For the straight-line segment of flight, equation (15) can be substituted into equa-

tion (4) in a manner similar to the previous section. The resultant equation after alge-

braic manipulation becomes

vc-vl (c2 - 2vcT + T2 _ vw2 sin2 )1/2 dT
d s - Vwt cos z ="c T dT

VC -VU

This integral can be found in the tables in the form

d dx = + b dx + a dx (16)

where

X =c + gT + T 2

c- 2 -VW 2 sin 2 z

g =- 2 vc

The solution can be evaluated in general in the form of equation (16). If the approxima-

tion - - is used, then the final two integrals cancel and result in the first-order
2

wind shear solution

ds - Vwt cos z'= -(c + gT + T2)1/2

The circular-arc segment for the exponential acceleration can be evaluated in a

manner similar to the constant acceleration. Substituting equation (15) into the left-hand

side of equation (6) and integrating gives

VCt+ vc - 1 e-Ot 1tjl = fl(k,zj+Az,zj) (17)

for small incremental changes in heading. In this case for small velocity changes

vw
k

vc - (Vc - v1)e-t

where the velocity at the beginning of the segment At and not the average is used. In

order to find the time-distance relationship, the left-hand side of equation (17) must be

solved for tj+ 1 in an iterative fashion for each increment Az until the heading change

is traversed or the velocity nearly equals vc.
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Equations Including Wind Shear

Wind shear can be a significant factor especially when the aircraft is in ascending

or descending flight where changes in wind character can take place over relatively short

distances. 2 The form of wind shear changes is assumed to be linear and this linearity

does not appear to be a significant restriction because the character of wind shear is not

well defined and, as will be shown later, random gusts (which can be used to simulate

higher order wind shear effects) have little overall effect on the equation accuracy.

During the straight-line segment of flight,

vg = = u 1 -k2sin2 z)1/2 + k cos

Let

z(t) = g- 4w = zo + Xlt  (0 5 t- tl)

Hence

k =k o + X2 t (0 : t - t 1 )

where X1 and X2 are the wind shear heading and wind airspeed ratio gradients,

respectively. In ascent or descent X1 and X2 may be related to ii, the altitude rate.

By using z as the basic variable,

t _ z-Z Ot-z

X1

and

k -ko + (z - zo) = o + 1X1

By using only the first two terms of the expansion equation (8), the right-hand side can be

approximated as

ds  1 z 1z 2  + (o + 01z) sin z + 01 cos z
X 2 L o 12 124 012 1

+(P32 l + ----2 sin 2z +( + cos 21 (18)
8 8 8 16 8 8

2 Wind changes which are encountered over long distances can be most easily incor-
porated by abrupt changes in Vw at waypoints. Additional waypoints may be added in
order to define the wind vector more accurately.
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On circular-arc segments of the trajectories, wind shear is more easily taken into

account by processing the equation in a manner similar to the acceleration procedures,
that is, processing the turn in small segments of Az and changing k and z on each

segment. This procedure is comparable to breaking the trajectory in a sequence of short

distance waypoints, as suggested earlier.

ALGORITHM FOR FLIGHT REQUIREMENTS TO TRAVERSE

A GROUND TRAJECTORY

The basic equations developed in the previous section can be used in various prob-

lems. For example, time of flight or distance traversed can be predicted when velocity

profile is provided. In this paper an algorithm has been developed to test the equations

which are compatible with the 4-D guidance requirement. Here, as in reference 4 tra-

jectory and flight time are defined and a velocity profile is to be determined.

The trajectory and flight time requirements are

(1) The flight time for a K segment trajectory is TD.

(2) The final velocity vf starts at time t = TD - tf. (This feature allows a final

velocity stabilization time tf = 0.)

(3) The deceleration (acceleration) profile is selected.

The velocity profile characteristics to be defined cover three distinct phases of

flight for which various conditions need to be determined. For phase 1 (final velocity

phase vf for tf), determine the point in the trajectory where this phase begins. For

phase 2 (deceleration phase, using either a constant or an exponential condition), deter-

mine the point at which the deceleration phase begins. For phase 3 (constant velocity

phase), determine the constant velocity to fly the remainder of the trajectory so that the

flight time constraint TD is attained.

The algorithm first determines the distance traveled over the phase 1 part of the

trajectory and subtracts this segment and time from further consideration. Since the

velocity is constant, equation (10) and/or (11) are used to find the distance or heading

change necessary to complete this phase.

The remaining two phases are solved in an iterative fashion. The steps are as

follows:

(1) The velocity vu for phase 3 is determined by assuming that no deceleration

(phase 2) is required. This velocity is determined by using equations (9) and (10) in the

form:

vuk+1) TD- tf if2( ,k(k)) + Rfl(zi+,zi,k(k)) (19)

1
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Equation (19), summed over the i segments of the trajectory, is solved iteratively,

where the kth iteration of vu, or vk), is used in

k(k)- Vw
v(k)

to find the (k + 1)th iteration. This simple method has been found to be extremely effec-

tive in solving equation (19). If wind shear exists, then equation (18) is used over that

part of the trajectory.

(2) The deceleration (acceleration) time ta is determined. For example, for the

constant -deceleration condition,

vu - Vf
ta = I a

Two conditions for the deceleration phase need to be considered depending upon where

the deceleration takes place on a straight-line or circular-arc segment. On the straight-

line part, either equation (13) or (16) is used to determine the distance ds(vu,vf) tra-

versed. The final distance segment is reduced to

dr = d i - ds(vu,Vf)

by assuming that di > ds. If this condition is not satisfied, then the velocity v1 must

be determined so that ds(vl,vf) = di and the remaining portion of phase 2 must be

accomplished on a circular-arc portion of the trajectory. On the circular-arc portion of

the trajectory, equation (14) or (17) are used to determine the elapsed time to turn a

heading increment Az starting at z i . The turn is incremented with Az <z Azmax

until either the time ta is reached or the turning segment ends. In this latter case,

the remainder of the trajectory must be incorporated on a straight-line segment.

The deceleration (phase 2) is continued until ta is reached. However, the

phase reduces the distance which is traveled on the constant-velocity phase 1. Hence,

with this reduced distance, step 1 is repeated. This step adds additional velocity and

requires a return to step 2. This iterative process continues until the change in constant

velocity vu resulting from step (1) is negligible and the process is converged.

SIMULATION EXAMPLE

The algorithm developed earlier for flight requirements to traverse a ground tra-

jectory has been employed in a simulation in order to determine the suitability of the

method to the 4-D control of an aircraft. In this example, a number of features are

tested, including the capability of the algorithm to converge to the desired constant-

velocity condition, the accuracy of the algorithm, the effect of wind gust disturbances,

12



and the capability of a simple autothrottle to fly a typical aircraft to, the commanded

velocity profile. The algorithm includes only constant deceleration and no wind shear.

Results using other deceleration and wind shear conditions may differ from those

presented.

The algorithm for determining the flight requirements has been incorporated in a

digital simulation of a 4-D aircraft control problem. In this simulation, a one-

dimensional model (along the trajectory only) of a jet transport is used. The velocity

commands from the algorithm input to an autothrottle system were used to test both the

algorithm and the ability of an aircraft to fly the required trajectory.

The algorithm to generate flight commands, shown in figure 1, is incorporated as

a single subroutine. The subroutine takes the present aircraft conditions on the trajec-

tory and determines the commanded constant velocity vu and the points along the tra-

jectory where the deceleration or acceleration commands start and end.

A five-segment trajectory used for a test case is shown in table I. Each point

along the trajectory where the flight changes between straight line and circular are is

included.

TABLE I. - TEST TRAJECTORY

Distance along trajectory Heading on
Segment Type where condition ends, straight-line segment,

m (ft) deg

1 Straight line 3 921.8 (12 866.7) 153.4

Circular arc 8 551.4 (28 055.6)

2 Straight line 16 008.8 (52 519.5) 240.5

Circular arc 16 327.1 (53 566.5)

3 Straight line 18 512.8 (60 737.3) 234.5

Circular arc 19 064.5 (62 547.5)

4 Straight line 20 891.9 (68 542.8) 224.1

Circular arc 23 334.1 (76 555.4)

5 Straight line 23 643.4 (77 570.0) 270.0

The flight requirements and wind conditions are as follows:

TD = 250 sec

Vf = 94.49 m/sec (310 ft/sec)
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tf = 10 sec

a = ±0.3048 m/sec (±1 ft/sec).

vw = 3.048 m/sec (10 ft/sec)

wP = 00

Convergence of Algorithm to. Desired Command Conditions

The algorithm is based upon the closed form solution equations which must be

iterated until the velocity continuity is obtained at the junction between the constant

velocity (phase 3) and the acceleration (phase 2) portions of the flight. In order for

the concept to be useful, this convergence must be rapid.

The test trajectory (table I) is used to illustrate this feature. The sequence of

steps for the algorithm working backward from the end of the trajectory is shown in fig-

ure 2. The constant final velocity phase, which takes 10 seconds at an airspeed of

94.49 m/sec (310 ft/sec) consumes 922.0 m (3025 ft). Hence, deceleration ends on the

curve segment 4 at the point 22 721.4 m (74 545 ft) along the trajectory.

The algorithm must now iterate over the remaining portion of the trajectory to

define phases 2 and 3. The first iteration determines the constant-velocity vu to fly to

the 22 721.4-m (74 545-ft) point as 105.52 m/sec (346.19 ft/sec). At a constant deceler-

ation of 0.3048 m/sec (1 ft/sec) to 94.49 m/sec (310 ft/sec), the time required is

36.19 seconds. The computer determines that a 15.74-second time elapse and a speed

of 100.72 m/sec (330.45 ft/sec) occur at the beginning of the circular-arc segment 4 and

the remainder must be accomplished on the straight-line segment 4. The first iteration

finds the starting point for the deceleration at 384.63 m (1261.9 ft) after the beginning of

the straight-line segment 4 as shown in figure 2. By using this point, the second itera-

tion finds a velocity vu of 106.43 m/sec (349.19 ft/sec). This condition can be met by

an additional deceleration distance; hence, the new deceleration starting point is at

100.77 m (330.63 ft) after straight-line segment 4 or at a distance along the trajectory of

19 165.3 m (62 878 ft). A final check of constant velocity shows a change to 106.47 m/sec

(349.32 ft/sec). This change is within the velocity error for convergence of the algorithm.

The flight commands to fly the required conditions are as follows: airspeed of

106.47 m/sec (349.32 ft/sec), deceleration to start at 19 165.3 m (62 878 ft), and decel-

eration to end at 22 721.4 m (74 545 ft). Alternate forms of command in terms of time

are also available as deceleration starts at 200.8 seconds and deceleration ends at

240 seconds.

14



The illustrative example used shows convergence after the second iteration. Other

cases show that similar convergence usually within two to three iterations for accuracies

of 0.01 second, 0.3048 m (1 ft), and 0.003048 m/sec (0.01 ft/sec) in time, distance, and

velocity, respectively. In a few cases four iterations have been necessary.

Accuracy of Solution Algorithm

The accuracy of the solution algorithm was tested by using the commands generated

at an initial trajectory point as input into a perfect aircraft control system; that is, the

aircraft airspeed instantaneously assumed the command value. With this condition, the

aircraft equations of motion along the trajectory were solved by using a fourth-order

Runge -Kutta routine.

The errors on the final miss distance for the various wind magnitudes for a wind

heading ipw = 2700 are shown in figure 3. For other conditions, similar accuracies

were obtained, which verified that the approximation using the closed form solution and

the iteration procedures used in the algorithm were more than sufficient to maintain an

excellent and usable solution accuracy. (Note that the results in fig. 3 cannot be accepted

as absolute because of rounding and other errors in the fourth-order Runge-Kutta

simulation.)

Effect of Wind Gusts on Flight Accuracy

Perturbations in windspeed will affect the accuracy with which the final trajectory

conditions are obtained. Hence, a Dryden model of wind gusts was added to the motion

simulation. As in the previous case, the control system was ideal; that is, the true air-

speed including wind gusts was instantaneously established at the commanded value.

Hence, a positive wind gust would instantaneously reduce the aircraft airspeed relative

to the steady wind and, equivalently, the aircraft ground speed.

A Monte Carlo simulation of 20 runs was made for a gust standard deviation of

3.048 m/sec (10 ft/sec). The final miss distance standard deviation was found to be

89 m (292 ft). Hence one can conclude that wind perturbations should cause only small

errors in final miss distance for the ideally controlled aircraft.

Effect of Airspeed Control System on Flight Accuracy

In the previous cases an ideal airspeed control system was used. Since the com-

mands can include both constant, ramp (constant acceleration), and step changes in veloc-

ity, a real controller can cause additional error in the final position. The autothrottle

system used in this study, shown in the block diagram of figure 4, is similar to the one in

references 4 and 6.
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Two features of the real airspeed controller were examined. The first is the

error caused by a ramp velocity command when a type 1 servo system (zero steady-state

position error) of figure 4 is used. Figure 5 shows the velocity error for a ramp com-

mand from 96.62 m/sec (317 ft/sec) to 91.44 m/sec (300 ft/sec) at a deceleration of

0.3048 m/sec2 (1 ft/sec 2 ). Integrating the area under the curve (fig. 5(b)) results in a

15.76-m (51.7-ft) error. Increasing the deceleration period would increase the error at

the rate of approximately 0.914 m (3 ft) for each additional second (the steady-state air-

speed error, fig. 5). For acceleration commands occurring early in the trajectory, this

control error would be removed during subsequent redetermination of the constant-

velocity commands; for commands late in the trajectory, it is small enough to be ignored.

Different feedback and forward loop gains in the control system would affect the magni-

tude of the error.

The second feature of the airspeed controller illustrates the effect of gusts on the

type of airspeed sensing system available in the aircraft. One system uses the instan-

taneous true airspeed which includes wind gusts and the second uses inertially filtered

airspeed typical of the signal obtained from a complementary filter (ref. 6) or an inertial

platform. The results are shown in figure 6, for the test trajectory discussed previously.

The wind conditions were vw = 15.24 m/sec (50 ft/sec) and /'w = 00. An identical
random process generated with a gust standard deviation ow = 3.048 m/sec (10 ft/sec)

was used to excite both systems. Figure 6 demonstrates that the system using inertially
filtered airspeed is capable of providing a much smoother flight. The difference in final
error for these two systems, however, is only 0.79 m (2.6 ft), a negligible value.

CONCLUDING REMARKS

The major contribution of this paper is to demonstrate that the basic time-airspeed-
distance relationship for aircraft flight on a trajectory consisting of straight-line and
circular-arc segments can be obtained in a closed form which is readily adaptable into a
useful algorithm for four-dimensional (4-D) aircraft control. The flight profile can con-
tain both constant and accelerating velocity segments and wind shear conditions. The
resultant algorithm can be solved in an iterative fashion by using a computer.

The results demonstrate that the algorithm solution tested in this paper converges
rapidly, usually within three to four iterations, and accurately, within 15.24 m (50 ft)
for 24.38 m/sec (80 ft/sec) wind velocity, for the test trajectory used. Similar con-
vergence rates have been obtained for other trajectory conditions. When the algorithm
is incorporated into an autothrottle system to execute the commanded velocity profile,
the effects of wind gusts and control system errors cause only small additional final
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position errors. Hence, 4-D control using the closed form time-distance-airspeed

relationships developed in this paper is shown to be feasible.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., January 7, 1975.
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